Novel Alternating Least Squares Algorithm for Nonnegative Matrix and Tensor Factorizations

نویسندگان

  • Anh Huy Phan
  • Andrzej Cichocki
  • Rafal Zdunek
  • Thanh Vu Dinh
چکیده

Alternative least squares (ALS) algorithm is considered as a "work-horse" algorithm for general tensor factorizations. For nonnegative tensor factorizations (NTF), we usually use a nonlinear projection (rectifier) to remove negative entries during the iteration process. However, this kind of ALS algorithm often fails and cannot converge to the desired solution. In this paper, we proposed a novel algorithm for NTF by recursively solving nonnegative quadratic programming problems. The validity and high performance of the proposed algorithm has been confirmed for difficult benchmarks, and also in an application of object classification. © 2010 Springer-Verlag. Author

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem.  At each step of ALS algorithms two convex least square problems should be solved, which causes high com...

متن کامل

Algorithms for Nonnegative Tensor Factorization

Nonnegative Matrix Factorization (NMF) is an efficient technique to approximate a large matrix containing only nonnegative elements as a product of two nonnegative matrices of significantly smaller size. The guaranteed nonnegativity of the factors is a distinctive property that other widely used matrix factorization methods do not have. Matrices can also be seen as second-order tensors. For som...

متن کامل

Fast Local Algorithms for Large Scale Nonnegative Matrix and Tensor Factorizations

Nonnegative matrix factorization (NMF) and its extensions such as Nonnegative Tensor Factorization (NTF) have become prominent techniques for blind sources separation (BSS), analysis of image databases, data mining and other information retrieval and clustering applications. In this paper we propose a family of efficient algorithms for NMF/NTF, as well as sparse nonnegative coding and represent...

متن کامل

Nesterov-based Alternating Optimization for Nonnegative Tensor Factorization: Algorithm and Parallel Implementations

We consider the problem of nonnegative tensor factorization. Our aim is to derive an efficient algorithm that is also suitable for parallel implementation. We adopt the alternating optimization (AO) framework and solve each matrix nonnegative least-squares problem via a Nesterov-type algorithm for strongly convex problems. We describe two parallel implementations of the algorithm, with and with...

متن کامل

Tensor Decompositions: A New Concept in Brain Data Analysis?

Matrix factorizations and their extensions to tensor factorizations and decompositions have become prominent techniques for linear and multilinear blind source separation (BSS), especially multiway Independent Component Analysis (ICA), Nonnegative Matrix and Tensor Factorization (NMF/NTF), Smooth Component Analysis (SmoCA) and Sparse Component Analysis (SCA). Moreover, tensor decompositions hav...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010